PROCESSING AND CLASSIFYING AMERICAN FOOTBALL IMAGES

Andrew T. Annnestrand

University of Texas at Austin
Electrical and Computer Engineering

Fig. 1: Defense on the left, offense on the right

ABSTRACT

American Football (or just Football) is the most popular
sport in the United States of America due to its dynamic and
exhilarating games. The sport is not only dependent on tal-
ented players, but it also heavily relies on tactical coaching.
Every week, the coaching staff will tirelessly analyze the op-
ponents tendencies, strengths, and weaknesses through past
game film. Before the film is analyzed by coaches, it has to be
tagged and organized so that the players and coaches have
ease when going through past games. Most of this tagging
and preparation of film is done by humans. In this paper, I ex-
plain an attempt to find ways to move this process of prepar-
ing film from human hands into the hands of digital image
processing and machine learning.

1. INTRODUCTION

Before getting into processing images, it is important to un-
derstand the essential components of football. There are two
teams in the game and each team is either defense or offense
in a "possession.” Each possession consists of multiple plays.
A play occurs once the ball is snapped from the offensive line
into the quarterbacks hands. Moreover, rules dictate that un-
less a player is ”in motion” (moving from one set position to
another) they must be still and cannot abruptly move. Only
the offense must follow this rule, whereas defensive players
are free to move wherever. This means that we will have static
moments throughout the whole game which will allow us to
capture images of “pre-snap” formations and analyze them.

2. GATHERING DATA

Perhaps one of the most time consuming parts of this project
was the gathering and labeling of the data. All of the data
was captured through a python script that took screenshots of
youtube clips. This part was not all that difficult, but once
I began building the various classifiers (offensive formation,
defense vs. offense) it required labeling the data so that a
degree of accuracy could be achieved. The data is from a
wide range of NFL games which results in many different
colors, angles, fields, logos, and more. Due to the diversity
and resolution of the images, many details had to be cut out
before usage.

3. PRE-PROCESSING IMAGES

Before we can make any inference or predictions on the for-
mations of the football teams, we need to decrease the noise
of the image. For example, the image in Fig. 1 is an example
of a formation we would like to analyze. However, having the
defense in the picture is simply just unnecessary noise when it
comes to predicting the formation of an offense. Thus, in the
following sections we will apply traditional image processing
techniques to give us more useful data.

3.1. Finding the line of scrimmage (LOS)

The line of scrimmage is the line that runs through the foot-
balls location, orthogonal to the sidelines of the football field.
This is an important line because the defense and offense line
up on it before every snap. Both the offense and the defense
must stay on their respective sides before the ball is snapped,
other wise it will result in a penalty. Thus, we have a natu-
ral separation between the players of the offense and defense.
This line will be the basis of how process the image. The LOS
can be marked in a variety of different colors, depending on
the network that is covering the game (see Fig. 2). However,
the majority of them use a dark blue to denote this, something
we will leverage later.

The very first idea that I chose to pursue from class is edge
detection, given the large amounts of lines. In Fig. 3 an image
is displayed after applying a canny edge detection. While it
is interesting to look at, unfortunately it doesn’t do too much



Fig. 3: Image following a canny edge detection

for us by itself. However, we can go a step further and use
a Hough Transform to pick specifically on lines, not just all
edges. The Hough Transform is an algorithm that uses an
accumulator matrix in order to detect if a straight line exists
between pixels. The transform also uses voting to see what
sets of pixels to truly be certain if there is a line present or
not. When taking the Hough Transform, we specify different
parameters to ensure that we are detecting the correct type
of lines. Some of the import ones include maxLineLength,
maxLineGap, and a threshold for number of votes required
for a line to be true. The maxLineLength and maxLineGap
parameters allow us to specify how lenient we are with gaps,
as well as how long a line can be before it becomes a small,
separate line.

Depicted in Fig. 4 is the result of running our edge image
in Fig. 3 though a Hough Transform for line detection. As
you can see, it picks up on most of the yard line markings
along the field, as well as the LOS. If we decrease the thresh-
old value and maxLineGap, we can expect a much different
picture where there is too many detected lines (Fig.5). As you
can see, there is quite a lot of freedom to detect lines at a va-
riety of angles. Our first set of parameters does a great job in
detecting the lines which we value most. But, how exactly do
we separate the LOS from the rest of the line markings? In
order to do this accurately I had to come up with my own al-
gorithm. I took advantage of one of the constant happenings
in every image of the dataset, the players concentrated at the
line.

Given the capturing of the players through the canny edge

Fig. 5: Image following a canny edge detection

detection, I decided that if I could find the location of the
highest player density, then the LOS would be near. In order
to find this player density, I took the gradient of the image
using a Sobel kernel (in the y direction). The reason why I
used Sobel was to specifically highlight the players gradients,
and not so much the vertical lines in the image. Once the
image gradient was calculated, I decided to employ a com-
mon technique in engineering — the sliding window. The slid-
ing window was chosen to be around (200,100) pixels and it
was slid across the entire image at 50 pixel intervals. During
each iteration of a new window, the average absolute value of
the window was calculated and compared to the current max
value. If there was a window with a higher average gradient,
its pixels were saved and new max value updated. As it turns
out, this is very accurate and gives us a window that includes
the LOS. Some examples can be seen in Fig. 6.

Now we have a window in which we know the LOS re-
sides, as well as all of the straight lines from the Hough Trans-
form. Putting these two algorithms together, I created a vot-
ing system to determine which Hough line was the LOS. For
each line identified, the number of pixels the line had in the
window was calculated. Ultimately, the line with the most
amount of pixels inside the window containing the LOS was
determined to be the LOS. Now we have determined a crucial
part of the processing, on to separating the defense and the
offense.



Algorithm 1: LOS Detection
Data: (i, )
Result: 7,,0259max

1 max = 0;

21=0;

3 while ¢ < numrows do
4 | J=0

5 while j < numcols do

6 W = Sobel[I(i:i+200,7: 7+ 100)];
7 if mean(abs(W)) > max then

8 max = mean(abs(W));

9

imawajmaw = i)j;
10 else
1 | nothing;
12 end
13 7+ = 50;
14 end
15 1+ = 50;
16 end

Fig. 6: Windows of LOS using algorithm

3.2. Rotating and splitting the image

In order to separate the image, we must divide it along the
LOS to have two images of the offense and defense respec-
tively. Given that the LOS in the image can be at a variety
of angles, we should generalize the process so that the LOS
is always vertical before splitting (this also makes it easy to
split the image on one x value). Therefore, we should rotate
the image based on the angle that the LOS makes with the
x-axis of the image. We can calculate this angle using simple
trigonometry of right triangles. Displayed in Fig. 7 is the re-
sult of rotating the image based on the angle of the LOS, as
you can see the LOS is now a vertical line (sits on a constant
x value). Now, we simply use indexing into the image array
to divide our image into offense and defense. The result is
show in Fig. 8. Again, the importance of these steps is that
we want to analyze the formations of each side separately.
That is, we don’t want the unneeded noise of the other side
increasing our training times, causing less inference power,
or totally misleading our models. Now that the main part of

“ETNEETO

Fig. 7: Rotated image so that the LOS is now a vertical line

the image processing is done (there are a few more processing
techniques that were used), we can start labeling the data (if
the half is offense of defense, and what formation) so that it
is ready to train a ML model.

3.3. Additional processing

As mentioned before, there was some additional steps that
needed to occur before training models could occur. The main
one was the fact that these images were very large and took
up gigabytes of memory. Given my limited access to compu-
tation power, I had to convert all of the images to grayscale
so that my machine could actually load all of them into mem-
ory. Of course this means that I lost valuable information in
the color of the images, but the models still performed well
(mainly because inference is based on spatial relationships in
the image). Lastly, one minor detail was decreasing the over-
all brightness of the image. This technique not only helped
decreased defects such as glare (during an afternoon game)
and very bright white jerseys, but it also helped delineate the
LOS in most cases.

4. CLASSIFYING THE IMAGES

Back to the main point of this project, we want to be able to
make game film processing more efficient and take it out of
the hands of humans. One of these processes includes label-
ing a play, or who is doing what on a given play. For exam-
ple, a coach may want to look at all defensive possessions of
ateam in a game to see how they line up. This brings us to the
first type of classifier that was trained, predicting if an image
was of an offensive formation or defensive formation using a
Convolutional Neural Network. The second type of classifier



Fig. 8: Two images, split into offense and defense

that was built was another CNN, but this time used to predict
the type of formation the offense was in.

4.1. Defense or Offense

For the first classifier, I created a CNN with 3 convolu-
tional+pooling layers, as well as a few dense layers after
flattening the convolutions. Given that the classification
problem that I was solving was based on two classes, I used
a sigmoid activation as my last layer to predict either a 0 or
1 (offense or defense). The data that I used was split up into
training, validation, and testing data. Below you can see the
validation loss/accuracy of the model over training, as well
as the testing accuracy after. training was complete. Overall
the testing accuracy would range from 81 — 86% for most
of the trials that I ran. Considering the size of the data set
(around 200 images for each class), I was satisfied with the
overall quality of prediction. I believe that if I were to grow
the dataset into the order of 1000’s, as well as increase the
depth of the neural network, I could see accuracies being in
the 90s.

4.2. Formation of Offense

There are many different offensive formations that can be
run in football, however I chose the 4 most common ones.
Each formation was encoded with the following values for
ML training: 0-empty set (only QB in backfield), 1-single
set (QB under center, RB in backfield), 2-shotgun (QB and
RB in backfield), 3-iformation (QB under center, FB and RB
in backfield). I used the exact same architecture as the first,
but I decreased the number of units in each layer by around
half. The reason I did this was because the size of the dataset
for this task was significantly smaller (around 40 images per

print(np.argmax(pretrained model.predict(np.reshape(X_test[9],
ev2_ imshow(X test[9]#%*255)

[0]

Fig. 9: CNN correctly classifying an offense

print({pretrained model.predict_classes(np.reshape(X test[3]
cv2_imshow(X_test[3]*255)

[[1]]

Fig. 10: CNN correctly classifying an defense



print(np.argmax({model .predict (np.reshape(X test[2], new
cv2 imshow(X test[2]*255)

[2)

Fig. 11: Model correctly classifying shotgun formation

class). Another modification I had to make was to make the
last layer of the network a softmax output so that our out-
put from the CNN is the probability of the image being each
separate class. Due to lack of data, as well as increase di-
mensionality (4 classes instead of 2 now), the accuracy of this
model was much lower than the previous. In fact, even after
adding dropout layers and some type of overfitting occurred
in the training process. However, my testing accuracy was ac-
tually much higher than my training or validation — boasting
in the 90% range. Again, these results are hard to trust due to
the lack of data, but there are some examples in Fig. 11, Fig.
12 of the model correctly inferring an offensive formation.

5. CONCLUSION

5.1. What I learned

This project allowed me the opportunity to apply many of
the learnings from class into an actual dataset. Specifically,
I leaned the value and effectiveness of edge detection and im-
age gradients. I also learned about the value of labeled data.
It took quite a lot of effort to build up my dataset, and I can
definitely say I will be more grateful for complete datasets in
the future. When it comes to machine learning, I learned how
to create Convolutional Neural Networks using TensorFlow.
Not only did I learn how to construct them, but I also learned
the importance of each type of layer (convolutional, pooling,

print(np.argmax(model.predict(np.reshape(X_test[3], ne
cv?2 imshow(X_test[3]*255)

[1]

Fig. 12: Model correctly classifying single set-back forma-
tion

activation, etc.) and how they process an image. CNNs are
currently the state of art when it comes to ML tasks with im-
age processing, and I am glad to have learned a valuable skill.

5.2. Future work

This project was very fulfilling, however I believe that there
is still so much more that can be done. One major feature I
would like to build upon is the captioning of images. The cur-
rent state of my classifiers allows me to understand what class
an image belongs to, but I believe implementing some type of
RNN that could turn an image to a sentence description about
the play could be achievable. Furthermore, the method used
in this project was to manually take screenshots of gameplay
— which is quite undesirable. I plan to take Digital Video
Processing next semester, and perhaps I can use techniques
to automatically capture those images from a large video (a
whole game).



